The Steubenville Comprehensive Air Monitoring Project (SCAMP) Sponsored by ... # The DOE-NETL Fine Particulate Matter (PM_{2.5}) Research Program U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory #### **SCAMP - Project Overview** #### Outdoor (Ambient) Study - Central monitoring site; four satellite sites - -Primary performer: CONSOL, Inc. - Daily sampling of ambient PM_{2.5} for 2-yr period - -Funding: DOE, EPA #### Personal Exposure Study - Outdoor vs. indoor vs. personal PM_{2.5} in Steubenville - -Primary Performer: Harvard School of Public Health - Primary Funding: Ohio Coal Development Office (OCDO) - -Co-funding: EPRI, NMA, API, AISI, CONSOL #### What is $PM_{2.5}$? - "PM_x"= Airborne particles having a mean aerodynamic diameter of "x" μm or smaller - Primary: formed and emitted as solid particles - soil and rock abrasion; sea salt; pollen and mold spores; fly ash; diesel soot - <u>Secondary:</u> reaction of gaseous precursors in the atmosphere to form solid particles $$-2NH_3 + SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow (NH_4)_2SO_4$$ - Major Sources: - −PM₁₀ Mechanical generation; primary - -PM_{2.5} Combustion; secondary #### **Regulatory Drivers** - 1997 National Ambient Air Quality Standards (NAAQS) for PM_{2.5} - Added to pre-existing standards for PM₁₀ - Based on adverse health effects - -Annual avg. $< 15 \mu g/m^{3}$; Daily max. $< 65 \mu g/m^{3}$ - 1999 Regional Haze Rule - PM_{2.5} reduces long-range visibility - -Rule targets 156 "Class I" areas (parks, wilderness) - All 50 states involved in planning process - Goal: "natural" conditions in 60 years - Implementation parallels PM_{2.5} NAAQS #### **Regulatory Timelines** #### 1997 U.S. Primary PM_{2.5} Emissions #### **Ambient PM_{2.5} Chemical Speciation** (Winter 1999) Urban Site Pittsburgh, PA (avg. of 36 samples) Rural Site Holbrook, PA (avg. of 9 samples) #### 1998 U.S. Secondary PM_{2.5} Precursor Emissions #### **Coal Power & PM_{2.5} - Central Issues** - Power plant emissions contribute significantly to <u>secondary</u> PM_{2.5} mass - Effect of power plant emission reductions on PM_{2.5} mass and regional haze is uncertain - Effect of power plant emission reductions on human health is even less certain #### **DOE-NETL PM_{2.5} Program Goals** - Relate emissions from coal-based energy production to concentrations and composition of ambient PM_{2.5} - Inform decision-makers about energy management options for achieving PM_{2.5} and related air quality standards #### **PM-Related Research Areas** #### **Program Components** - Ambient Monitoring and Analysis - Emissions and Plume Characterization - Modeling and Evaluation - Emissions Control Technology #### **Ambient Monitoring and Analysis** DOE-NETL's Major Projects in PA-OH-WV - Steubenville Comprehensive Air Monitoring Project (SCAMP) - Upper Ohio River Valley Project (UORVP) - Pittsburgh Air Quality Study (CMU/EPA "Supersite") - NETL In-House Site #### **SCAMP Outdoor Study** #### **Description and Preliminary Results** #### **SCAMP Outdoor Study - Status** - Sampling May 2000 May 2002 - Ambient data analysis "complete" through Dec. 2000 Performed by CONSOL Inc. - Performed by CONSOL, Inc. - Not yet integrated with Personal Exposure Study #### **SCAMP- Ambient Monitoring Sites** - Steubenville, OH (Central Site) - New Manchester, WV - Hopedale, OH - Wheeling, WV - Latrobe, PA #### **SCAMP Outdoor Sampling Program** #### Central site - Daily filter sampling of PM_{2.5} and PM₁₀ mass - −1 in 4 chemical analysis of PM_{2.5} filter samples - Continuous sampling of PM_{2.5} mass (TEOM) and gases (CO, O₃, SO₂, NOx, NMHC, CH₄, NH₃) - Weather, pollen, mold spores #### Satellite sites - Daily PM_{2.5} mass via filter sampling (FRM) - –1 in 4 chemical analysis of PM_{2.5} filter samples #### **SCAMP Central Site** • Franciscan University of Steubenville ### Steubenville PM_{2.5} Mass Concentrations Daily Filter (FRM) Data #### Steubenville PM_{2.5} Mass vs. Satellites #### **SCAMP - Average PM_{2.5} Mass (FRM)** | | | May
through
August | September through December | May
through
December | |-------------------|-----------------------------|--------------------------|----------------------------|----------------------------| | PM _{2.5} | Steubenville | 21.5 | 20.0 | 20.7 | | | North (New
Martinsville) | 16.3 | 13.6 | 14.9 | | | South (Wheeling) | 18.5 | 19.6 | 18.9 | | | East (Latrobe) | 19.2 | 14.9 | 16.9 | | | West (Hopedale) | 15.8 | 13.2 | 14.4 | | PM ₁₀ | Steubenville | 29.1 | 26.4 | 27.7 | #### Average PM_{2.5} Composition Sept.-Dec. 2000 #### Average Steubenville PM_{2.5} Composition, wt % #### Average PM_{2.5} Composition, wt % | | NI | NH ₄ ⁺ | | SO ₄ ² - | | NO ₃ - | | CI- | | Other (by difference) | | |--------------|-------------|------------------------------|-------------|--------------------------------|-------------|-------------------|-------------|-------------|-------------|-----------------------|--| | | May-
Aug | Sep-
Dec | | | Steubenville | 12.0 | 12.2 | 35.7 | 28.6 | 3.3 | 8.8 | 0.9 | 0.9 | 48.1 | 49.5 | | | North | 11.7 | 11.7 | 36.4 | 30.2 | 2.1 | 5.9 | 1.2 | 0.5 | 48.6 | 51.6 | | | South | 13.1 | 13.7 | 39.7 | 37.1 | 2.7 | 2.0 | 0.8 | 0.4 | 43.7 | 46.8 | | | East | 11.9 | 10.9 | 35.8 | 26.5 | 2.6 | 7.1 | 1.0 | 0.6 | 48.7 | 55.0 | | | West | 12.3 | 12.3 | 38.1 | 31.3 | 2.5 | 8.2 | 1.0 | 0.6 | 46.1 | 47.6 | | | | | | | _ | | _ | | | | | | **Decrease** Increase # $PM_{2.5}$ mass, $\mu g/m^3$ #### **SCAMP Continuous Samplers (Central Site)** Sept-Dec. 2000 Gases - pink PM_{2.5} mass (TEOM) - blue #### **Gas Concentrations vs. PM_{2.5} TEOM Mass** SCAMP Central Site, Sept-Dec. 2000 #### SO₂ vs. PM_{2.5} Sulfate SCAMP Central Site, Sept-Dec. 2000 #### PM_{2.5} vs. Weather Conditions - No significant correlation between PM_{2.5} and surface meteorological parameters (wind speed, direction, humidity, temperature, precip., etc.) - Need to investigate effects of regional air mass movement - Organize data according to common particle trajectories #### **Summary - SCAMP Outdoor Study** - High day-to-day variability in PM_{2.5} concentrations - All sites close to or above annual PM_{2.5} standard - PM_{2.5} variations were consistent across all sites - Sulfate fraction decreased and nitrate fraction increased from summer to winter 2000 - PM_{2.5} concentration showed some correlation with the ambient air gases (except O₃) - No strong correlation between PM_{2.5} and weather data - Pollen and mold spore concentrations were not correlated with PM_{2.5} #### **SCAMP Personal Exposure Study** **Description and Preliminary Results** #### **SCAMP Personal Exposure Study - Background** - Studies have repeatedly shown positive associations between outdoor PM_{2.5} levels and increased mortality and morbidity - -Respiratory and cardiovascular problems - Questions remain regarding: - How populations are exposed to air pollution - -Components most responsible for health effects #### **SCAMP Personal Exposure Study - Status** - Completed data collection for panel studies of 2 "susceptible" populations - Older Adults: Summer 2000; Fall 2000 - Companion cardiovascular health study (NIEHS) - Children: Winter 2001; Summer 2001 - Preliminary data analysis for older adult panel - -PM_{2.5} mass concentrations #### **Older Adult Panel Study Locations** #### **Harvard Multi-pollutant Monitor** • 24-hr filter samples NO₂/SO₂ and O₃ Ogawa badges (passive samplers) #### **Harvard Outdoor Sampling** #### **Harvard Indoor/Personal Sampling** #### Personal Exposure/Health Study Participants | | Subjects | Gender | Age | Residence | |--------|---------------------------------------|---------------------|-----------------|---| | Summer | 30 Health
25 Indoor
10 Personal | 28 Female
2 Male | 71.6
(55-90) | Kennedy (15) Elmer White (4) Gaylord (5) Off Site (6) | | Fall | 29 Health
25 Indoor
10 Personal | 27 Female
2 Male | 70.7
(53-90) | Kennedy (13) Elmer White (5) Gaylord (5) Off Site (6) | - 32 different participants overall - 27 reported heart/lung conditions - No current smokers; 15 previous smokers #### Personal Exposure/Health Sampling Schedule #### PM_{2.5} at Outdoor Sites Harvard Personal Exposure Study #### **SCAMP Outdoor vs. Indoor PM**_{2.5} #### Outdoor vs. Personal PM_{2.5} #### **Indoor vs. Personal PM**_{2.5} #### **Personal Exposure Study - Future Work** - Assess correlation among personal, indoor and outdoor gaseous exposures - Assess correlation among personal, indoor and outdoor PM_{2.5} composition - Use mixed regression models to account for: - Subject and season effects - Home ventilation and other activity factors - Use exposure measurements in analyses with the cardiovascular health measurements #### Acknowledgements - CONSOL, Inc. - -Steve Winter - Jeff Withum - Harvard School of Public Health - -Stefanie Ebelt - Petros Koutrakis ## For Further Information on DOE-NETL PM_{2.5} Research Program - NETL Environmental & Water Resources Product Line Website: - -www.netl.doe.gov/coalpower/environment - Other Communications tools: - 5-year Strategic Plan - -Program Fact Sheet - NETL Conference April 9-10, 2002 - "PM_{2.5} and Electric Power Generation: Recent Findings and Implications"